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Dependence of ceramic fracture properties 
on porosity 
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A connected-grain model developed earlier to study the modulus of elasticity as a power-law 
of density was extended to study the dependence of the flexural strength of polycrystalline 
ceramics on porosity. Relations were derived for specific surface fracture energy, fracture 
toughness and flexural strength as power laws of (1 - p), where p is porosity. Model validity 
was confirmed with data on s-alumina, U02, Si3N4, and the YBa2Cua07-~ superconductor. 

1. Introduction 
The fracture of porous ceramics is a subject of con- 
siderable practical importance. The applications of 
porous devices such as gas sensors [t], heat exchan- 
gers [2], particulate filters [3], building materials [4], 
and refractories [5] require both high porosity and 
good strength. The strength of a porous material de- 
pends on pore distribution, pore morphology, and 
pore size, with high porosity generally leading to low 
strength. Therefore, to improve the fracture properties 
of porous ceramics, it is essential to understand the 
effect of porosity on fracture behaviour of these por- 
ous ceramics. 

Ceramics have inherently random microstructures. 
The pores in these materials have random shapes, 
sizes, and distributions. Models proposed in the litera- 
ture to describe the fracture behaviour of porous ma- 
terials are either empirical or based on analytical 
treatment of geometrically regular pore shapes and 
idealized pore distributions: hence, they do not in- 
corporate randomness of microstructure. The details 
of these models may be found in the review by Singh 
[6]. Here, only a brief summary of such earlier at- 
tempts is given. 

Duckworth [7] proposed that the empirical relation 
between porosity, p, and flexural strength, cyf(p), is 

err(p) = c%exp( - bp), (1) 

where Cyo is the flexural strength of a pore-free mater- 
ial and b is an empirical constant. The value of b varies 
from 3 7 depending on the range of porosity. The 
applicability of Equation 1 at high porosity is limited 
and CYf(p = l) is not zero. Dutta et al. [8] have pro- 
posed the following similar empirical relation to de- 
scribe the dependence of strength on porosity 

m = ~ o ( 1  - p ) "  (2) 

where m is an exponent arising from a similar relation 
for elastic modulus. In their study, Dutta et al. [8] 
assumed that crack length is independent of porosity, 
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and that specific fracture energy, y, is proportional to 
the modulus of elasticity. When applied to the data on 
Si3N4, agreement between the model (Equation 2) and 
experimental data was somewhat limited. 

On analytical grounds, Vardar et al. [9] developed 
a statistical model to predict the dependence of 
strength on the porosity of randomly distributed 
pores. Applying the Weibull approach, the authors 
concluded that strength depends on pore content, 
rather than on pore size. Recently, Krstic [10] pro- 
posed a similar model to describe the dependence of 
strength on porosity. Evans and Davidge [11], on the 
other hand, assumed that during fracture at low stress, 
a pore at the grain boundary extends along the first 
grain boundary to form a crack of length equal to the 
sum of the pore size, R, and the grain size G. Using 
Griffith's equation [12], they obtained 

I 27 E ]112 
c~f = ~(R + G) (3) 

where y is the specific surface energy and E is the 
modulus of elasticity. This equation was confirmed by 
experimental data on UO2. 

The analytical models described above are applic- 
able to ceramics with low volume fractions of poros- 
ity, i.e. where pores are isolated. In practice, as dis- 
cussed in an earlier paper [13], pores in highly porous 
materials are connected. 

In view of the above discussion, there is a need for 
an analytical model that incorporates the random, 
connected-pore structure of ceramics. Such models 
have been attempted in efforts to explain charge and 
mass transport through the random-pore structures of 
rocks [14] by using both analytical and computa- 
tional techniques. Based on these studies, a connected- 
grain model was proposed by Wagh et al. [13] to 
explain the dependence of elastic modulus on poros- 
ity. The connected-grain model of Wagh et al. [13] 
was extended here to predict the fracture behaviour of 
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porous ceramics. In our model, a ceramic structure is 
characterized by the connectivity of grains and skew- 
ness of grain size distribution. Furthermore, the por- 
osity dependence of modulus of elasticity, E, is given 
by E(p) = Eo(1 - p)',  where Eo is the porosity of the 
pore free material, and m is dependent on the grain 
and pore size distribution. Our model has several 
important features: (a) it preserves the random nature 
of grain size and its distribution; (b) it relates the 
microstructure of the material, such as pore and grain 
size and their distribution, to the average properties of 
the material; and (c) it relates the ratio of physical 
properties of a porous material to the corresponding 
dense material with the porosity as a power law. Such 
relations are mathematically simple to handle and are 
known as scaling relations. 

We extend the model of Wagh et al. [13] to study 
fracture parameters, e.g. specific surface fracture en- 
ergy, fracture toughness, and flexural strength, and 
their dependence on porosity. In Section 2, the model 
is briefly described and the porosity dependence of 
specific fracture energy is derived. In Section 3 the 
result is applied to Griffith's theory of fracture [12], 
and explicit porosity dependence of the flexural 
strength is obtained. The model predictions are com- 
pared with experimental data in Section 4. 

2. Dependence of specific surface 
energy of ceramics on porosity 

A polycrystalline ceramic structure may be considered 
as a three-dimensional continuous network of grains. 
As in a mathematically tractable model, grains can be 
represented by solid cylinders of material where their 
length is of the order of the average grain size. Thus, 
a ceramic microstructure may be represented by 
a continuous network of solid cylinders with pore 
channels in between. Materials-related transport phe- 
nomena, such as mechanical, thermal, electric, and 
magnetic properties, may be studied by considering 
the materials chains, whereas the pore-related proper- 
ties, such as fluid permeability, may be studied by 
considering the pore channels. 

The random size distribution of grains can be rep- 
resented by the variation in the cross-section of the 
solid cylinders along the length of the chains of cylin- 
ders. The analytical simulation to obtain the variation 
of the size of grains is performed by shrinking the radii 
of randomly chosen cylinders by a fraction x at a time. 
This process is repeated until the average size of a cy- 
linder is reduced to the average grain size in the 
ceramic under consideration. A detailed description of 
the procedure is given in [13]. In this paper, we pres- 
ent only the highlights of the derivation of a one- 
dimensional model. 

We assume that initially, the microstructure con- 
sists of cylinders whose size is equal to the largest 
grain size, ro, in the material. The random reduction, 
say for the ith cylinder, reduces its radius from rl to xr~. 
This means that the area of the cross-section of the 
cylinder would be reduced by a factor of x 2. The 
probability, q~(n), that any particular cylinder will 

shrink n times is given by the binomial distribution 

*(n) = [ (M 
M! 

where N is the total number of cylinders and M is the 
total number of times the shrinking operation is per- 
formed. The average of the cross-sectional area ( A )  
of the ith cylinder is given by 

<A>. = ~<r~> 

M 

= ~r~o Y x 2 " O ( n )  (5) 
n = O  

where ro is the radius of the unshrunk cylinder. The 
summation of the right-hand side of Equation 5 yields 

(A> = TCF2[(N + x2--  1)IM 
N (6) 

Similarly, the average volume of the ith cylinder of 
length 1 is 

( V )  = ~ ( r 2 ) l  

M 

= rdr 2 ~ x2"tp(n) 
t l=O 

N (7) 

where, Vo = rcrZl is the volume fraction of an un- 
shrunk cylinder. Because N ( V)/No Vo is the volume 
fraction of the material, we have from Equation 7 

Vo N = ( l - p )  (8) 

Similarly, from Equations 6 and 8 

<A> = Ao(1 - p) (9) 

where Ao = nr g is the area of the cross-section of an 
unshrunk cylinder. Equation 9 relates the average 
area of the cross-section of the cylinders to the poros- 
ity of the material. 

The analytical treatment presented here is limited to 
a one-dimensional model. However, computer simula- 
tions carried out by Wong et al. [14] show that these 
relations are the same for a three dimensional network 
of cylinders. Therefore, these relations may be used to 
obtain porosity dependence of various physical prop- 
erties of polycrystalline ceramics. 

As described in our earlier article [13], each grain in 
a polycrystalline ceramic consists of a lattice structure 
in which the bonds between atoms are represented by 
elastic springs. The number of springs at a given cross- 
section is proportional to the area of cross-section. 
Based on this, it was shown [13] that the average 
spring constant (k )  of the entire material is given by 

(k)  ~: (r -~) 

o: (1 - p)m (10) 

and because, E oc (k) ,  it can be shown that 

E = Eo(1  - p)m (11) 

where Eo is the elastic modulus of a pore-free material 
and m, a function of the shrinking parameter x in- 
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creases when x decreases and vice versa. In one dimen- 
sion [13], m is equal to - 1Ix 2. In three dimensions, 
its value is given in thermodynamic limits [13] by 

ln(x 2) 
m -- (1 -- x2)" (12) 

Using Equation 11, we proceed to study the poros- 
ity dependence of specific surface energy, i.e. the en- 
ergy spent in generating new fracture surfaces which is 
measured as energy per unit area of the new surfaces. 
When the material is loaded, energy may be stored in 
the grains as elastic strain energy. This energy is re- 
lieved as the specific surface energy when fracture is 
initiated and new surfaces are formed. Energy may 
also be consumed at the crack tip by dislocation 
motion [15], by micropores [16], and by cleavage- 
step formation [17, 18]. A summary of various frac- 
ture modes that consume energy during fracture is 
given in the review by Singh [6]. 

During fracture under stress, the materials chains 
are stretched and the elastic strain energy is stored in 
each cylinder. By definition, the elastic strain energy 
density, u is given by 

u = ~de (13) 
0 

where cy is the tensile stress, ~ the strain, and ee the 
strain at fracture. Because ceramics are non-ductile 
materials, we may assume ~ = Ee. Equation 13 then 
leads to u oc E. Using this information in conjunction 
with Equation 11 results in 

u = uo(l - p)m (14) 

where Uo is the energy density in the pore-free mater- 
ial. Therefore, the elastic strain energy in a volume, V, 
is given by 

uV = Uo(1 - p)m+l 

where Uo is the elastic strain energy in a dense mater- 
ial. Because the specific surface energy, y, is the energy 
given by 

U y - 
area 

= 70(1 - p)m+~ (15) 

the elastic strain energy will vary with porosity as 
( 1  - p)"+~. In Equation 15, 70 is the specific surface 
energy of the fully dense material. 

3. Applications to Griffith's theory 
The expression for surface energy developed in the 
previous section will be used here to obtain the de- 
pendence of fracture strength and toughness on poros- 
ity and grain size, based on Griffith's theory of fracture 
[12]. Fracture of a polycrystalline ceramic is caused 
by inherent flaws [19]. In polycrystalline ceramics 
there exists a statistical distribution of grain size. As 
discussed in the previous section, due to the shrinking 
procedure, a small pore exists adjacent to a large grain 
so that the sum of the grain and pore sizes remains 
equal to the original grain size (cylinder size) of the 

model. The original grain size can be taken as the 
largest grain size, Go, in the microstructure, which is 
also equal to the largest pore size Ro, and may be 
considered a constant of the given material. Based on 
the analysis by Evans and Davidge [11] for pore- 
initiated failure, the critical flaw size, c is equal to this 
sum. Therefore 

c ~- ( G + R )  

= Go (16) 

and, based on Griffith's equation (Equation 3), frac- 
ture stress, c~f, is given by 

Thus, the critical flaw size is equal to the largest grain 
size, Go. Because Go is a constant, the flexural 
strength, ere, depends on porosity only through its 
dependence on modulus of elasticity and the specific 
fracture energy. Substitution for 7 and E from Equa- 
tions 15 and 11 in Equation 17 leads to 

O'f = O '0(1  - -  p)t ( 1 8 )  

where t = m + 0.5 and Oo = (27oEo/rcGo) 1/2. The de- 
pendence of flexural strength on porosity is given by 
Equation 18. Similarly, we can write the porosity 
dependence of the fracture toughness as 

Klc = (27E) 1/2 

= KIco(1 -- p)m+o.5 (19) 

where Klco=(27oEo) 1/2. Thus, the formula for 
flexural strength and fracture toughness have the same 
exponent. 

In the low-porosity limit, Equation 18 reduces to 
the Duckworth relation given by Equation 1. This 
suggests that the empirical parameter, b, used by 
Duckworth is the same as the exponent t in the pres- 
ent model in the low-porosity limit. The Duckworth 
relation also exists for elastic modulus given by 
E = Eo exp ( - ap), where a is an empirical constant. 
In the low-porosity limit, a can be shown to be equal 
to m in Equation 11. From Equation 18 this means 
that the empirical parameters b and a in the Duck- 
worth relations for flexural strength and modulus of 
elasticity differ by a value of 0.5. It is also noteworthy 
that the exponent t in Equation 18 is higher by a value 
of 0.5 than the exponent empirically predicted for 
flexural strength by Dutta et al. [8], who predict the 
same exponent for both flexural strength and elastic 
modulus. The inferences arising from Equation 18 will 
be verified with experimental data on various poly- 
crystalline ceramics in the next section. 

4. Comparison of theory with 
experiments 

Figure 1 shows the plots of experimental data on flex- 
ural strength as a function of porosity for s-alumina 
[20], Si3N 4 [19], YBazCu307_ 8 superconductor [21], 
and [3-alumina [22] and least squares fits of Equation 
18 with the experimental data are also shown in the 
figure. The exponents t obtained from the fits for these 
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T A B L E I Comparison of exponent in Equation 18, C~r = c%(1 - p)~, obtained from fracture data and calculated from modulus  of elasticity 

Materials Porosity m from Exponent t 
range Eq. 11 

From Fig. 1 Calculated from 
fracture data t = m + 0.5 

a-alumina 0.05-0.54 2.14 2.54 2.64 
Si3N 4 0.26-0.6 2.41 2.98 2.92 
UO2 0.02-0.09 3.02 3.52 3.52 
YBazCu30  7 6 0.05-0.26 2.43 3.07 2.93 
[3-alumina 0.02-0.37 4.09 5.59 4.59 

Superconductor 
6 - -  

5-- 

4-- 

3-- 

2 
-3 

nitride 

m 

0 

o~- alumina / � 9  I / ~  

-2 -1 

kn 11 - p) 

C 
.._1 

Figure 1 Porosity dependence of flexural strength, ~f, for various 
ceramic materials fitted with Equation 18, c~f = c%(1 - p)L 

materials (Fig. 1) are tabulated in Table I. In addition, 
the values of t for UO2 with low porosity are also 
shown in the table which also includes the values of 
t (=  m + 0.5) obtained from the elasticity data for 
these materials, It can be seen from Table ! that the 
values of t agree quite well with m + 0.5 for m-alumina, 
Si3N4, UO2, and YBazCu307-5 superconductor, 
confirming the validity of Equation 18. 

m-alumina in this study had a relatively fine micro- 
structure. Gutshall and Gross [23] have shown that in 
a fine-grained alumina, the major mode of fracture is 
intergranular. The formalism derived here is valid for 
intergranular fracture; hence, the agreement between 
the elasticity data and the fracture data is not surpris- 
ing. 

The results on Si3N 4 and YBa2Cu3OT-~ show 
a similar trend. The values of the exponents t obtained 
from fracture data and calculated from elasticity data 
agree quite well, fully confirming the validity of the 
model. Furthermore, Rice et al. [19] found that the 
fracture toughness and fracture energy of SiaN4 do 
not depend on pore size but on the amount of porosity 
which is consistent with Equation 18. 

The formalism suggested here, can also be applied 
to low-porosity data on UO2. Igata and Domito [24] 
measured the elastic modulus and flexural strength of 
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U O  2 and express their data as the Duckworth rela- 
tions shown in Equation 20a and b. 

E = Eoexp( -  3.025p) (20a) 
and 

eye = cyoexp(- 3.525p) (20b) 

In Equation 20a, the exponent 3.025 for elastic 
modulus represents m in the present model, whereas 
the exponent 3.525 in Equation 20b, the flexural 
strength equation, represents t. These two exponents 
differ by 0.5, in agreement with the result from our 
model. 

In the case of [3-alumina, the agreement between 
t and m + 0.5 is not good. This is believed to be related 
to the presence of a glassy second phase on the grain 
boundary. Evans et al. [22] have shown that during 
sintering of [3-alumina, as a result of purity related 
problems, sodium aluminate is formed. Because of 
this, [3-alumina may contain glass as a grain-boundary 
phase. The model presented here is based on the 
assumptions that the material under consideration 
consists of distinct grains, and that the mode of frac- 
ture treated here is intergranular. The glassy phase 
does not have a distinct grain structure, and fracture 
may occur through the glassy phase. Thus, the present 
model is not adequate for [3-alumina that contains 
a glassy phase. 

5. Conclusion 
This work is part of an overall attempt to develop 
a connected-grain model to explain porosity depend- 
ence of various transport properties of ceramics, in- 
cluding mechanical, fracture, thermal, and electrical 
properties. In this paper, we have attempted to model 
fracture properties of ceramics, which have discrete 
grain structures, and for which consistent data are 
available. The model, however, must be generalized 
for materials where a glassy phase is present. This will 
be considered in future work. 
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